Overview 
Animation 
Classic Surfaces 
Parm Surfaces 
Curves on Surfaces 
Discrete Geodesics 
ODE 
Platonic Solids 
Cycloid 
Root Finder 
Harmonic Maps 
Rivara Bisection 
Scalar Field 
Weierstrass 
Closed Polygon 
Elastic Curve 
Billiard in an Ellipse 
LIC Visualization 
Discrete VF 
Hodge Splitting 
Textured Surface 
Surfaces of Rotation 
Mean Curvature Flow 
Pythagoraen Tree 
Julia Sets 
	
Surfaces of Rotation
Surfaces of rotation are generated from a planar curve by rotating the curve around an axis.
The shape of the surface of rotation depends on the given meridian curve, the position of the axis. Let c(s)= (c1(s),c2(s),c3(s)) be a curve in the xz-plane, then the expression of a surface of rotation with respect to the z-axis is given by
Rotation[c,z-axis](s, t) = (cos(t)*c1(s), sin(t)*c2(s), c3(s)).
