jv.vecmath

## Interface PdMatrixIf

• ### Method Summary

Methods
Modifier and Type Method and Description
`void` ```addEntry(int i, int j, double inc)```
Add value to component of matrix, and possibly enlarge matrix if too small.
`void` `clear()`
Set all elements of the matrix to 0.
`double` ```getEntry(int i, int j)```
Get the component of matrix.
`int` `getNumCols()`
Get number of columns of matrix.
`int` `getNumRows()`
Get number of rows of matrix.
`boolean` `isSquare()`
Check if matrix is square.
`PdVector` ```leftMultMatrix(PdVector out, PdVector in)```
Multiply this matrix with vector and fill output vector, `out = this*in.`
``` ```
`double` ```multQuadratic(PdVector left, PdVector right)```
Compute `left^T*this*right`.
`void` `multScalar(double scalar)`
Multiply all matrix components with scalar.
`PdVector` ```rightMultMatrix(PdVector out, PdVector in)```
Multiply this matrix with vector and fill output vector, `out = in*this.`
``` ```
`void` ```setEntry(int i, int j, double value)```
Assign value to component of matrix, and possibly enlarge matrix if too small.
`void` `transpose()`
Transpose a square matrix, `this = transpose(this)`.
• ### Method Detail

• #### getNumCols

`int getNumCols()`
Get number of columns of matrix.
• #### getNumRows

`int getNumRows()`
Get number of rows of matrix.
• #### getEntry

```double getEntry(int i,
int j)```
Get the component of matrix.
• #### setEntry

```void setEntry(int i,
int j,
double value)```
Assign value to component of matrix, and possibly enlarge matrix if too small.

```void addEntry(int i,
int j,
double inc)```
Add value to component of matrix, and possibly enlarge matrix if too small.
• #### multScalar

`void multScalar(double scalar)`
Multiply all matrix components with scalar.
• #### leftMultMatrix

```PdVector leftMultMatrix(PdVector out,
PdVector in)```
Multiply this matrix with vector and fill output vector, `out = this*in.`. Matrix need not be square. Input vector must have same size as number of columns of this matrix. Method modifies size of output vector to number of rows of this matrix. If output vector is null then it is created.
• #### rightMultMatrix

```PdVector rightMultMatrix(PdVector out,
PdVector in)```
Multiply this matrix with vector and fill output vector, `out = in*this.`. Matrix need not be square. Input vector must have same size as number of rows of this matrix. Method modifies size of output vector to number of columns of this matrix. If output vector is null then it is created.

```double multQuadratic(PdVector left,
PdVector right)```
Compute `left^T*this*right`. The matrix is interpreted as a quadratic form.
Parameters:
`left` - The left argument.
`right` - The right argument.
Returns:
`left^T*this*right`.
• #### isSquare

`boolean isSquare()`
Check if matrix is square.
• #### transpose

`void transpose()`
Transpose a square matrix, `this = transpose(this)`.
• #### clear

`void clear()`
Set all elements of the matrix to 0.